
Package: depcache (via r-universe)
September 4, 2024

Type Package

Title Cache R Expressions, Taking Their Dependencies into Account

Imports codetools, methods

Version 0.2

Description Hash an expression with its dependencies and store its
value, reloading it from a file as long as both the expression
and its dependencies stay the same.

License GPL (>= 3)

Repository https://aitap.r-universe.dev

RemoteUrl https://github.com/aitap/depcache

RemoteRef HEAD

RemoteSha c013c0f35f3c11f3c073c2083d10a7c6d21a42bd

Contents

depcache-package . 1
cache . 2
depcache.options . 4
setCached . 6

Index 8

depcache-package Cache R Expressions, Taking Their Dependencies into Account

Description

Hash an expression with its dependencies and store its value, reloading it from a file as long as both
the expression and its dependencies stay the same.

1

2 cache

Details

The functions in this package take an expression, walk its code to find its dependencies and calculate
a hash of them. If a corresponding file already exists, it is loaded; otherwise, the expression is
evaluated and its value is saved in the file. Optionally, this check may be performed every time a
variable is accessed.

By default, a subdirectory of the current directory is used to store the cache files.

Index: This package was not yet installed at build time.

Author(s)

Ivan Krylov

References

As an implementation detail, the package currently uses the 64-bit FNV-1a hash: http://www.
isthe.com/chongo/tech/comp/fnv/.

The reproducible package uses a similar approach to caching.

See Also

cache, %<-%

Examples

a <- 1
will evaluate expression
cache({ message('evaluating expression'); a + 1 }) # 2
will reuse cached value
x %<-% { message('evaluating expression'); a + 1 } # 2
x
a <- 2
will recalculate the value
x # 3

cache Evaluate an expression and cache its results

Description

This function extracts all dependencies of an R expression, hashes them together with the expression
itself and either loads the already-existing file, or evaluates the expression and stores the result in
that file.

Usage

cache(expr, extra = NULL, ...)

http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
https://CRAN.R-project.org/package=reproducible

cache 3

Arguments

expr An expression to evaluate or load from cache, unquoted.

extra Any R value that should be considered part of the state deciding whether the
expression should be re-computed. For example, if expr reads a file, consider
using file.mtime or md5sum to check for changes in it.

... Additional options, see depcache.options.

Details

Currently, the hash is obtained by means of serialisation. In order to make semantically same values
have same hashes on a wide range of R versions, the following steps are taken:

• When computing the hash of the serialized data (only the XDR format version 2 or 3 is sup-
ported), the first 14 bytes containing the header (including the version of R that serialized the
data) are ignored.

• Every function is “rebuilt” from its body before hashing, forcing R to discard the bytecode
and the source references from the copy of the function before it’s hashed.

• Strings are converted to UTF-8 before hashing.

• All this is done recursively.

The exact algorithm used and the way hash is obtained are implementation details and may eventu-
ally change, though not without a good reason.

Other aspects of R data structures are currently not handled:

• Nothing is done about environments. Due to them being reference objects, any fix-up must
re-create them from scratch, taking potentially recursive dependencies into account, which is
likely expensive.

• Some S4 classes (like reference class implementations) just have different representations in
different versions of R and third-party packages. They may mean the same thing, but they
serialize to different byte sequences.

Value

The result of evaluating expr, either directly, or loaded from cache.

See Also

setCached

Examples

a <- 1
will evaluate the expression the first time
cache({ message('evaluating expression'); a + 1 }) # 2
saved value of the expression will be used
cache({

message('evaluating expression')
even if written a bit differently

4 depcache.options

a + 1
}) # 2
a <- -1
expression evaluated again because dependencies changed
cache({ message('evaluating expression'); a + 1 }) # 0

depcache.options Caching options

Description

Control how the dependencies are gathered and hashed to locate the determine the file name to load
the cached object from.

Usage

depcache.options(
defaults = getOption("depcache.version", '0.2'),
skip = getOption("depcache.skip", NULL),
dir, compress, local.only, format.version,
eval.ellipsis, trace.functions

)

Arguments

defaults A string containing the version of depcache to get other defaults from. If not
set, takes the value from the depcache.version option (see options), falling
back to the current version of the package.
To make the caching more reproducible against package updates, call options(depcache.version
= something) once at the top of your scripts.
Currently, versions 0.1 and 0.2 are accepted. When a new version of the pack-
age changes the defaults or adds new settings, the range of the accepted values
will expand.

skip A character vector of variables to omit from automatically-gathered dependen-
cies. Variables carrying unintended or unimportant state, which would otherwise
interfere with obtaining a reproducible hash, should be listed here. This may be
useful when a symbol encountered in the expression doesn’t signify a variable in
the evaluation frame (e.g. non-standard evaluation when plotting with lattice),
or when the variable is being assigned to as part of the expression.
Defaults to the depcache.skip option, or NULL if unset.

dir The directory to store the cache files inside.

compress Passed as the compress option to saveRDS when saving the cached objects.

depcache.options 5

local.only If TRUE, only variables available in the same environment where the caching
function has been called from are considered as dependencies; parent envi-
ronments are ignored. Typically, this means taking local variables as parts of
the hash that determines the file name, but not loaded packages or attached
datasets. Setting this to FALSE may invalidate the cache next time a package or
R itself is updated.

format.version Passed as the version argument to saveRDS and also used when serialising any
objects to hash them. Only versions 2 and 3 are supported.

eval.ellipsis Whether to consider ... in the cached expressions to be a part of the state. If
TRUE, all the arguments are evaluated during hashing. If FALSE, the arguments
are completely skipped.

trace.functions

Whether to visit the function definitions inside the expressions being considered
for caching. If TRUE, the bodies of the functions being defined inside the ex-
pression are searched for variable names; any variables matching those in the
calling environment are considered dependencies. If FALSE, the analysis ignores
the whole function definition.

Details

In all cases, explicitly passed arguments override settings from the options(), which override the
defaults. Depending on the defaults argument or the depcache.version option, the defaults may
change; setting it explicitly will help your scripts stay forward-compatible.
Here you can find all the versioned parameters with their defaults:

Parameter Option name 0.1 0.2
dir depcache.dir ‘.depcache’
compress depcache.compress TRUE
local.only depcache.local.only TRUE
format.version depcache.format.version 2
eval.ellipsis depcache.eval.ellipsis FALSE TRUE
trace.functions depcache.trace.functions TRUE FALSE

This function shouldn’t be normally called by the user (except, perhaps, to verify the parameters
about to be passed to the caching functions), but it is automatically invoked on every call to cache,
setCached, or the use of cache-tracking assignment operators %<-% and %->%. Any additional
options passed to the functions as ... are handled here, and so are the global options.

Value

A list containing the settings to be used by the caching system.

dir The directory used for storage of the cache files.
compress Passed to saveRDS.
skip Variables to skip when hashing the dependencies of the expressions.
local.only Whether to ignore non-local dependencies.
format.version Passed to saveRDS as the version argument. Also determines the format ver-

sion when serialising the variables to hash them.

6 setCached

See Also

cache, setCached

Examples

The output is affected by the user's use of options(...) and the
current version of the package
options(depcache.local.only = FALSE)
print(depcache.options(format.version = 3))
options(depcache.local.only = TRUE)
print(depcache.options())

"skip" makes it possible to avoid mistaking arguments evaluated in a
non-standard way for local variables
speed <- 1
options(depcache.skip = 'speed')
x %<-% { message('fitting the model'); lm(dist ~ speed, cars) }
speed <- 0
not fitted again despite change in local variable "speed"
summary(x)

setCached Cache-tracking assignment

Description

Cache expression values and automatically recalculate them when their dependencies change

Usage

symbol %<-% expr
expr %->% symbol
setCached(symbol, expr, extra = NULL, ...)

Arguments

symbol A variable name to associate with the expression, unquoted.

expr The expression to cache, taking dependencies into account.

extra An unquoted expression to be considered an extra part of the state, in addition
to the automatically determined dependencies. Will be evaluated every time the
variable is accessed to determine whether it should be recalculated.

... Additional settings, see depcache.options.

setCached 7

Details

Sets up the variable symbol to automatically recalculate the value of expr any time its dependencies
change, using makeActiveBinding and the same mechanisms that power cache.

Initially, expr is loaded from cache or evaluated, and the hash is remembered. When the variable
named by symbol is accessed, its dependencies are hashed together with expr (this may be done
recursively if the dependencies are themselves active bindings set up the same way). If the hash
changes, the value of expr is again loaded from cache (if available) or evaluated anew.

To prevent infinite loops during dependency calculation, symbol is automatically skipped, but a
self-dependent expr is probably a bad idea anyway.

Value

Returns the value of expr, invisibly. Called for the side effect of creating an active binding with a
name specified by symbol.

See Also

cache, makeActiveBinding

Examples

a <- 1
will evaluate the expression first
x %<-% { message('evaluating expression'); a + 1 }
x # 2
will reuse cached value
{

message('evaluating expression')
a + 1
even if written a bit differently

} %->% y
y # 2
a <- -1
will evaluate the expression again
x # 0
will load the new cached value
y # 0
(setCached(z, x + y)) # 0
a <- 0
recalculates two out of three
z # 2

Index

∗ package
depcache-package, 1

∗ utilities
cache, 2
depcache.options, 4
setCached, 6

..., 5
%->% (setCached), 6
%<-% (setCached), 6

attach, 5

cache, 2, 2, 5–7

depcache (depcache-package), 1
depcache-package, 1
depcache.options, 3, 4, 6

file.mtime, 3

makeActiveBinding, 7
md5sum, 3

options, 4, 5

saveRDS, 4, 5
setCached, 3, 5, 6, 6

8

	depcache-package
	cache
	depcache.options
	setCached
	Index

